

MAVIS Deeper than HST, Sharper than JWST Status - May 2021

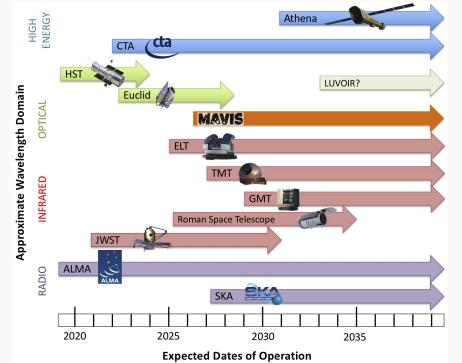
Prof Francois Rigaut (ANU, Principal Investigator) A/Prof Richard McDermid (MQ, Project Scientist) Dr Giovanni Cresci (INAF, Deputy Project Scientist)

MAVIS: DEEPER THAN HST, SHARPER THAN JWST

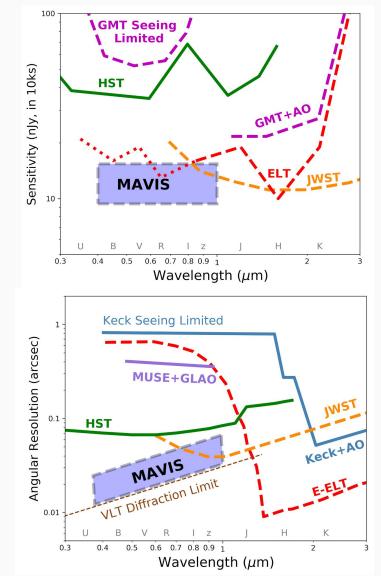
- Multi-conjugate Adaptive Optics system for correction in the visible
 - complete with an 4k×4k imager @ 7.3mas pixels
 and an IFU w/ 4 spectral resolution modes (4-12k), ¼ number of MUSE spaxels
- Expecting > 10% Strehl (goal 15%) at V band over 30"x30"
- 50% sky coverage @ South GP for 15% encircled energy in 50 mas spaxel
- Imager 5 sigma limiting mag in 1 hour **V** = **29.5** (SNR = HST x 2 on . source)
- Consortium Australia (AAO Consortium, lead) / INAF / LAM / ESO
- Passed phase A 06/2020, first light expected Sem 2 2027
- For the ESO VLT AOF (UT4)
 - 4x2 Laser Guide Stars;
 - 3 Near-IR NGS Wavefront Sensors (using SAPHIRA);
 - 3 Deformable mirrors (DSM + 2 post focal DMs);
- A brilliant science case (publicly available on arXiv)

MAVIS CONTEXT & SCIENCE

BY MID-2020'S THE NEED FOR MAVIS WILL BE URGENT

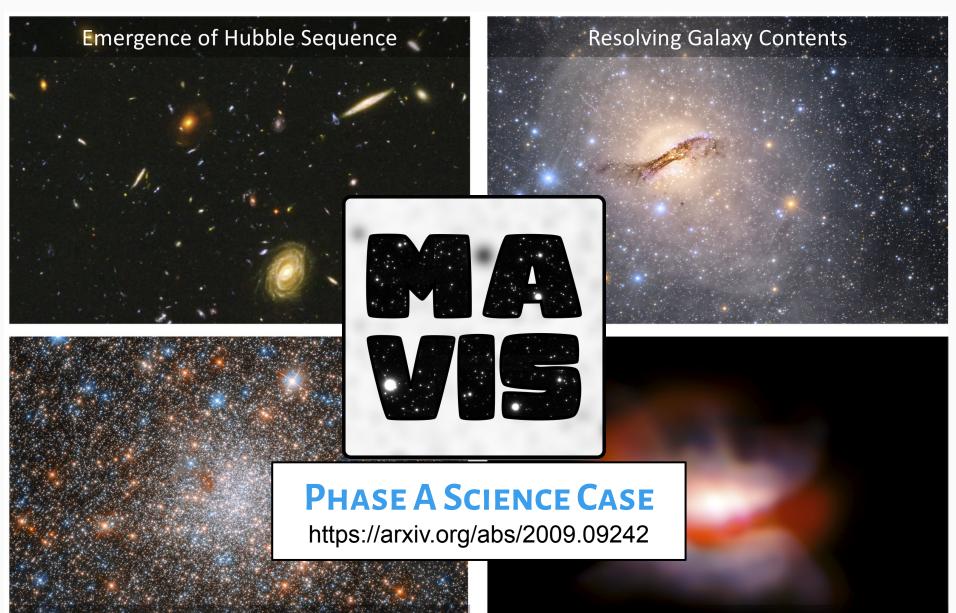

INAF

ISTITUTO NAZIONALE DI ASTROFISICA


NATIONAL INSTITUT

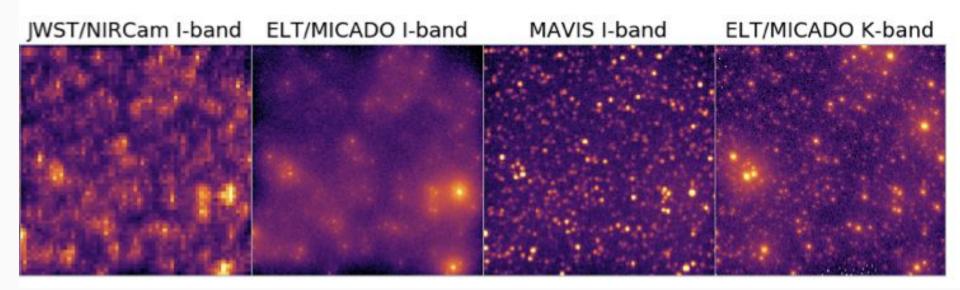
Australian National Universitv

AC



- Future facilities will look deeper and sharper than ever before
- Among general purpose facility instruments, only MAVIS combines high sensitivity with high angular resolution at optical wavelengths
 (General Purpose = Imaging+Spectroscopy over most of sky)

MACQUARIE University

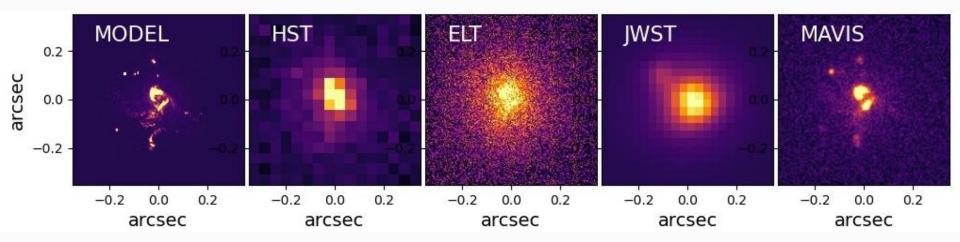


Star Clusters as Tracers of Galaxy Evolution

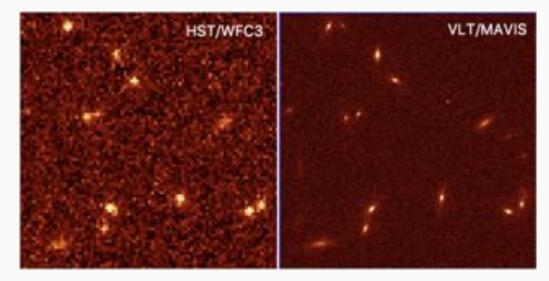
Birth, Life, Death of Stars and Planets

BY MID-2020'S THE NEED FOR MAVIS WILL BE URGENT

- Key future facilities (e.g. JWST and ELT) are not well-optimized for <1um
- MAVIS is crucial to provide optical coverage at matched angular resolution to ELT in the IR


Complementarity MAVIS visible ↔ ELT Near Infrared

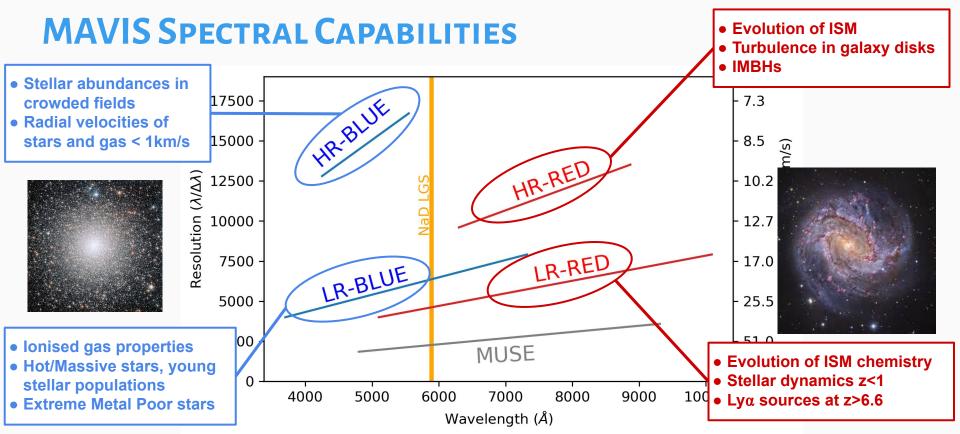
MAVIS Science Case


SNAPSHOT SCIENCE: GALAXY REST-FRAME UV MORPHOLOGIES

INAF

ISTITUTO NAZIONALI DI ASTROFISICA

- MAVIS will allow the deepest optical images ever taken
- Crucial for understanding the UV morphology of the faintest galaxies at high redshift



Australian National Universitv

MŪ

MACQUARIE University

- This is science that CANNOT be done with MUSE-NFM spectral resolution, wavelength coverage, and lack of high-res imaging
- Significantly higher sky coverage of MAVIS amplifies this contrast by also allowing statistical samples and rare objects to be readily observed

MAVIS BACKGROUND AND PROJECT

AUSTRALIA STEPS IN AS A STRATEGIC PARTNER

Australian National Universitv

INAF

ISTITUTO NAZIONALE DI ASTROFISICA

NATIONAL INSTITUT

LAM RATOIRE D'ASTRONUE

MO

MACQUARIE University

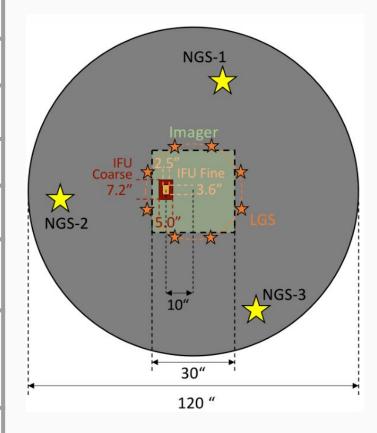
- Australia-ESO strategic partnership 2018-2027
- First ESO instrument led by Australia
- Workload split about 50-50 Australian/European partners

FUNDING AND FTEs

- ESO funds €8M non-labour
- Consortium h/w cost estimate
 is €12M (includes €2M contingency)
- Strategy to bridge gap includes grants (e.g. LIEF in Australia) and looking for new partners.. Preparing call for expression of interest.
- Labour estimate **200 FTEs**
 - Note Australia had to work out long term plan for funding of its
 FTEs through the project, funded and managed by AAL (AUD22.5M 2019-2026)
- MAVIS is clearly **an opportunity for Australia** to capitalise on its strategic partnership and to step in as a possible future full partner. It is strongly supported in Australia (AAL funding \$22.5M / wide LIEF support)

SCHEDULE AND RISKS

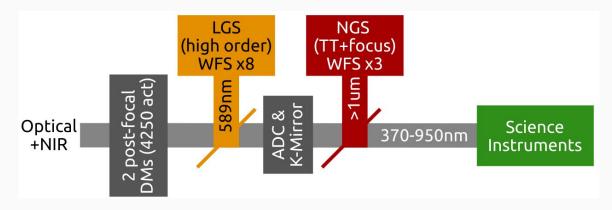
Phase Name	Start	Finish	Dur.	2019	2020	2021	2022	2023	2024	2025	2026	2027
Phase A - Concept study	02/2019	06/2020	1.3yr									
Phase B - Preliminary design	08/2020	06/2022	1.4yr									
Phase C - Final design	07/2022	07/2023	1.1yr									
Long lead item procurement	12/2022	03/2024	1.4yr									
Phase D - MAIV	08/2023	03/2027	3.7yr									
Phase E - Installation & Commissioning	04/2027	11/2027	8mo									


- Schedule brings us **in line with ELT commissioning** & MICADO SCAO
- MAVIS approved by STC in Oct and Council in Dec, agreement signature planned for May 2021.
- Consortium has already started the phase B work (albeit at a slow pace)
- Risks include:
 - Funding (missing €2-4M) may be challenging in time of COVID
 - Timeliness of some h/w (NGCII, ALICE) and s/w (RTCtoolkit) deliveries from ESO
 - International travel impossible because of COVID

MAVIS INSTRUMENT DESIGN

MAVIS TOP-LEVEL SPECIFICATIONS (BASELINE)

Science Field	30"x30"					
Angular Resolution	FWHM ~ 20mas at V band					
Strehl Ratio	>10% (15% goal) at V under median conditions					
Sky Coverage	> 50% at the Galactic pole					
Wavelength Coverage	VRI (optimised); B-z (extended)					
Imager	~ 7mas pixels. 7 broad and 15 narrow band filters, 1h 10 σ for V ~ 29.5					
Spectrograph	Image slicer. Two spatial modes: ~3"x3" @ 25mas and ~6"x6" @ 50mas. Four spectral modes: 370-1000nm, R=5,000-15,000					
Visitor port	Potential for third instrument					


DESIGN PARAMETERS (NEEDED TO ACHIEVE THE SPECS)

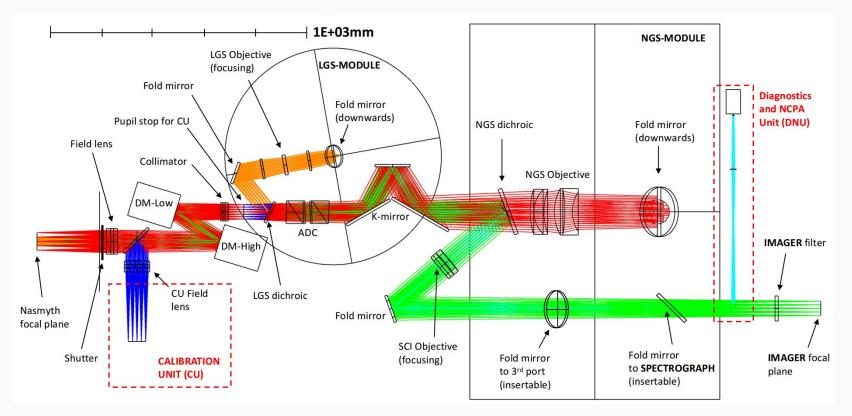
INAF

ISTITUTO NAZIONALE DI ASTROFISICA Australian National Universitv

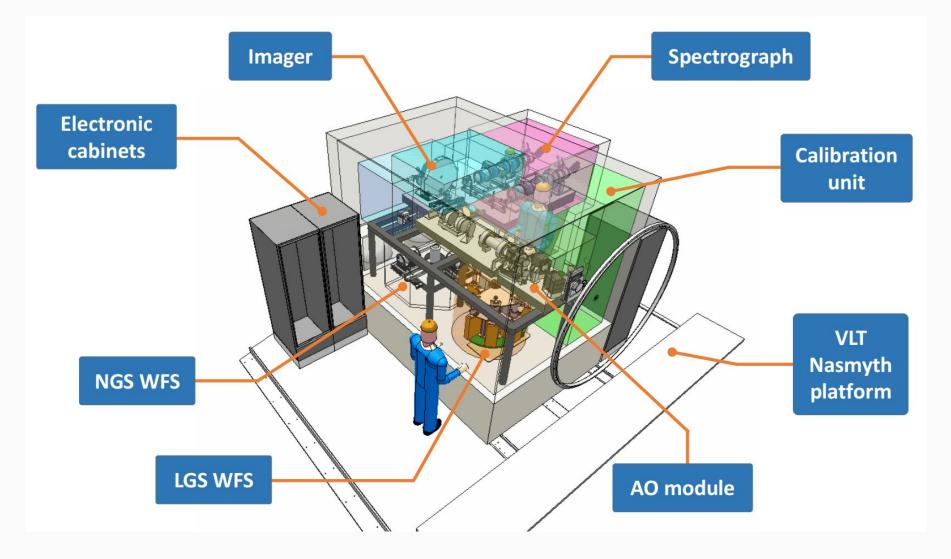
MO-

- Wavelength splitting:
 - Science: 370-950nm (goal 1000nm)
 - High order Wavefront Sensors (WFS): 589nm (Sodium LGS)
 - \circ Low order (Tip-Tilt + Focus & truth): NIR (1-1.8 $\mu m)$

- AOF Deformable Secondary, plus two post focal DMs conjugated to 6 and 13.5 km (5420 actuators total)
- **Eight LGS** (4 lasers split x2), feeding **eight 40x40 LGS WFS**. Using ALICE ESO EMCCD CCD220 with NGCII controllers. Sampling 1-1.5kHz.
- Three NIR NGS Wavefront Sensors, also providing low order (2x2) truth sensing and focus. Using 3x SAPHIRA detectors with NGCII controllers.

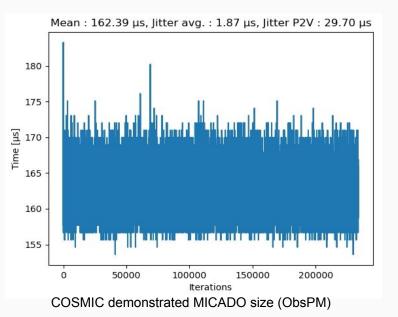

MACQUARIE University

LAM


AN INNOVATIVE OPTICAL DESIGN

- > 5 iterations on optical design (below design as of 10/2020)
- Innovative: (a) uses refractive elements and (b) does not collimate the beams
- Everything gravity invariant (except K mirror and ADC)
- Very "healthy" design, all zero-order principles of AO design are there.

MAVIS ON THE AOF NASMYTH PLATFORM



REAL-TIME CONTROLLER (RTC) & CONTROL

- Top expertise in tomographic wavefront control
 - MMSE / Learn & Apply / Pseudo-Open Loop Control
 - Using experience from GeMS, ERIS, LBT, GALACSI
 - New results in predictive controls provide performance margin
- Agreed with ESO on a **RTC architecture that satisfies ESO ELT standards** while retaining all the developments done within the Green Flash project.

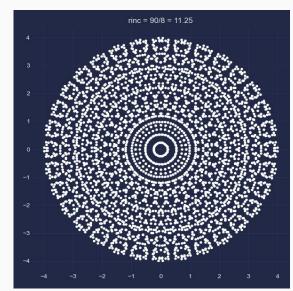
Two components RTC (COSMIC platform, synergy with MICADO):

- Hard RTC (HRTC):
 - Extremely fast: 160us latency, 2us jitter
 - Interfaces to h/w (WFS, DMs)
 - Multi-GPU server, prototype exist, COTS
- Soft RTC (SRTC):
 - Telemetry
 - CPU server w/ GPU accelerators
- **COSMIC** now **demonstrated on sky** (Keck, 04/2021) with ~110 µs latency.

AO PERFORMANCE

- Simulation team: Arcetri (Synergy w/ MAORY), seconded by AAO-StromIo
- **4+ simulations tools** from Arcetri (PASSATA, Fourier code), LAM (Fourier code) and AAO-Stromlo (yao, COMPASS). Good redundancy.

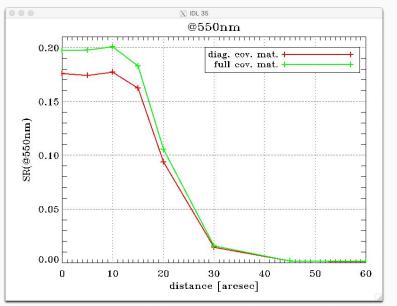
INAF

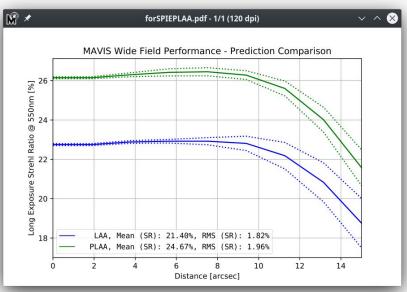

ISTITUTO NAZIONALI DI ASTROFISICA Australian

University

National

AX U


• Comprehensive AO simulation driving the design

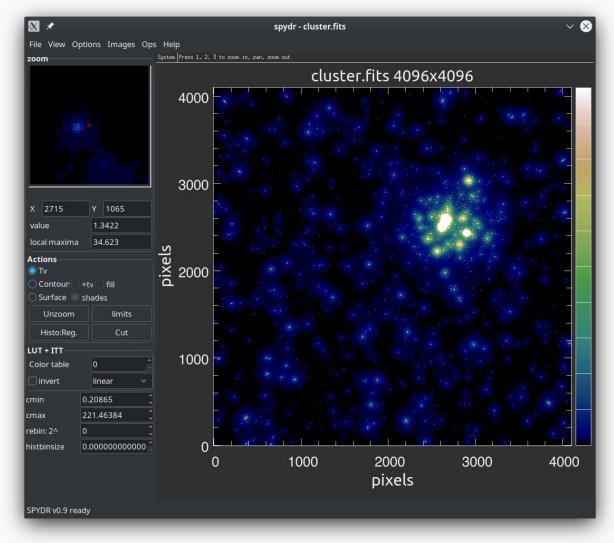

MACQUARIE

University

New super-resolutions methods (Jesse Cranney & Guido Agapito)

Example of performance under median conditions (Guido Agapito)

Performance with predictive methods (Jesse Cranney)


SCIENCE IMAGE SIMULATOR & PSF RECONSTRUCTION

INAF

ISTITUTO NAZIONALE DI ASTROFISICA

NATIONAL INSTITUT

- In progress @ AAO (S.Monty); use both simple Fourier and end-to-end PSFs.
- Object models, combined w/ AO and instrument performance models to generate image
- Used to investigate astrometric performance
- **PSF reconstruction** WP also in the work, led by LAM. Folded in from the start.

Australian National

University

MŪ

MACQUARIE University

CHALLENGES

- Very **tight errors budget**; targeting 135 nm rms (goal 120)
 - Non-Common Path Aberrations
 - Any drift due to temperature and gravity changes
 - Can't tolerate significant "unknown" error budget term
 - New live monitoring, active supervisor approach of error budget

• Sky coverage

- We are adopting a no-compromise approach to reach the specifications
- NIR, diffraction limited PSFs for TT sensing
- Use of SAPHIRA APD-arrays

Astrometry

- Multi-conjugate fixes aberrations over the FoV, but can also mess up distortions
- Targeting similar requirements than MICADO
- Developing calibration/observation/reduction strategy
- Folding into design to reduce impact on astrometry
- LGS flux marginal in low season
 - Looking at possibility to increase laser power and/or use predictive control

A HAPPY MAVIS CONSORTIUM

