

MAVIS Deeper than HST, Sharper than JWST 10 Slides Status @ Start of phase B

Prof Francois Rigaut (ANU, Principal Investigator) A/Prof Richard McDermid (MQ, Project Scientist) Dr Giovanni Cresci (INAF, Deputy Project Scientist)

MAVIS: DEEPER THAN HST, SHARPER THAN JWST

Australian National University

- Multi-conjugate Adaptive Optics system for correction in the visible
 - complete with an 4k×4k imager @ 7.3mas pixels
 and an IFU w/ 4 spectral resolution modes (4-12k), ¼ number of MUSE spaxels
- Expecting > 10% Strehl (goal 15%) at V band over 30"x30"
- 50% sky coverage @ South GP for 15% encircled energy in 50 mas spaxel
- Imager 5 sigma limiting mag in 1 hour **V** = **29.5** (SNR = HST x 2 on . source)
- Consortium Australia (AAO Consortium, lead) / INAF / LAM / ESO
- Passed phase A 06/2020, first light expected Sem 2 2027
- For the ESO VLT AOF (UT4)
 - 4x2 Laser Guide Stars;
 - 3 Near-IR NGS Wavefront Sensors (using SAPHIRA);
 - 3 Deformable mirrors (DSM + 2 post focal DMs);
- A brilliant science case (publicly available on arXiv)

MACQUARIE University

BY MID-2020'S THE NEED FOR MAVIS WILL BE URGENT

INAF

ISTITUTO NAZIONALE DI ASTROFISICA

NATIONAL INSTITUT

Australian National Universitv

AC

- Future facilities will look deeper and sharper than ever before
- Among general purpose facility instruments, only MAVIS combines high sensitivity with high angular resolution at optical wavelengths
 (General Purpose = Imaging+Spectroscopy over most of sky)

MACQUARIE University

Star Clusters as Tracers of Galaxy Evolution

Birth, Life, Death of Stars and Planets

MAVIS Science Case

SNAPSHOT SCIENCE: GALAXY REST-FRAME UV MORPHOLOGIES

INAF

ISTITUTO NAZIONALI DI ASTROFISICA

- MAVIS will allow the deepest optical images ever taken
- Crucial for understanding the UV morphology of the faintest galaxies at high redshift

Australian National Universitv

MŪ

MACQUARIE University

- This is science that CANNOT be done with MUSE-NFM spectral resolution, wavelength coverage, and lack of high-res imaging
- Significantly higher sky coverage of MAVIS amplifies this contrast by also allowing statistical samples and rare objects to be readily observed

THE MAVIS CONSORTIUM

- Australia-ESO strategic partnership 2018-2027
- First ESO instrument led by Australia
- Workload split about 50-50 Australian/INAF+LAM+ESO

MAVIS TOP-LEVEL SPECIFICATIONS (BASELINE)

Science Field	30"x30"
Angular Resolution	FWHM ~ 20mas at V band
Strehl Ratio	>10% (15% goal) at V under median conditions
Sky Coverage	> 50% at the Galactic pole
Wavelength Coverage	VRI (optimised); B-z (extended)
Imager	~ 7mas pixels. 7 broad and 15 narrow band filters, 1h 10 σ for V ~ 29.5
Spectrograph	Image slicer. Two spatial modes: ~3"x3" @ 25mas and ~6"x6" @ 50mas. Four spectral modes: 370-1000nm, R=5,000-15,000
Visitor port	Potential for third instrument

AN INNOVATIVE OPTICAL DESIGN

- > 5 iterations on optical design (below design as of 10/2020)
- Innovative: (a) uses refractive elements and (b) does not collimate the beams
- Everything gravity invariant (except K mirror and ADC)
- Very "healthy" design, all zero-order principles of AO design are there.

CHALLENGES

- Very **tight errors budget**; targeting 135 nm rms (goal 120)
 - Non-Common Path Aberrations
 - Any drift due to temperature and gravity changes
 - Can't tolerate significant "unknown" error budget term
 - New live monitoring, active supervisor approach of error budget

• Sky coverage

- We are adopting a no-compromise approach to reach the specifications
- NIR, diffraction limited PSFs for TT sensing
- Use of SAPHIRA APD-arrays

Astrometry

- Multi-conjugate fixes aberrations over the FoV, but can also mess up distortions
- Targeting similar requirements than MICADO
- Developing calibration/observation/reduction strategy
- Folding into design to reduce impact on astrometry
- LGS flux marginal in low season
 - Looking at possibility to increase laser power and/or use predictive control

A HAPPY MAVIS CONSORTIUM

