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ABSTRACT

The Learn & Apply tomographic reconstructor coupled with the pseudo open-loop control scheme shows promis-
ing results in simulation for multi-conjugate adaptive optics systems. We motivate, derive, and demonstrate the
inclusion of a predictive step in the Learn & Apply tomographic reconstructor based on frozen-flow turbulence
assumption. The addition of this predictive step provides an additional gain in performance, especially at larger
wave-front sensor exposure periods, with no increase of online computational burden. We provide results using
end-to-end numerical simulations for a multi-conjugate adaptive optics system for an 8m telescope based on the
MAVIS system design.
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1. INTRODUCTION

Adaptive Optics (AO) is crucial for obtaining diffraction limited performance in modern optical telescope systems.
Classical single-conjugate AO (SCAO) allows for the correction of atmospheric turbulence in the direction of a
given guide-star/wave-front sensor (WFS) pair. In general, the scientific target does not coincide with the guide-
star, so a tomographic AO system with multiple WFSs (using independent guide-stars) can be implemented
to reconstruct the atmospheric turbulence in real-time in the direction of the scientific target and project this
turbulence to a deformable mirror (DM) at the telescope pupil in the direction of the scientific target, e.g.,
Laser-tomographic AO (LTAO). More generally, there may be a number of scientific targets, multiple DMs
in closed-loop, and multiple WFSs, all of which combined constitute a so-called multi-conjugate AO (MCAO)
system.

The real-time process of taking measurements from various WFSs and computing the commands to be applied
to multiple DMs is commonly referred to as tomographic reconstruction, and is the subject of many studies in AO
over the last two decades (see, e.g., 1–8). Here we discuss the Learn and Apply (L&A) method for generating the
tomographic reconstructor for general MCAO systems, and the extension of the classical L&A method to include
a predictive estimation based on the frozen-flow hypothesis in an attempt to reduce the servo-lag error introduced
by inherent time-delays in AO systems. This predictive step depends on the knowledge of additional turbulence
parameters, and in the spirit of the L&A scheme, we provide a robust and efficient method of identifying these
parameters (a.k.a., the learn-step) from AO telemetry in our companion paper by Zhang et al.9
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1.1 Learn and Apply in AO

The Learn and Apply1 (L&A) method for generating a tomographic reconstructor in adaptive optics (AO) is a
type of minimum mean-square error (MMSE) optimisation, based on heuristic principles. Despite its intuitive
formulation, the L&A reconstructor embedded into the pseudo open-loop controller10,11 (POLC) is capable of
providing high-performance correction in complex AO systems.

L&A is based on the principle that finding a control scheme to optimise deformable mirror (DM) commands
for correction of atmospheric turbulence in the direction of given wave-front sensors (WFSs) is straight-forward
(e.g., the pseudo-inverse of the interaction matrix between DMs and WFSs), yet generally the WFS directions
are not equivalent to the direction of the scientific targets. In L&A, this is reconciled by using the geometry of
the AO system and a model of the atmospheric profile to estimate artificial measurements in the direction(s) of
the scientific target(s), based on the WFS measurements.

While this method is technically very similar to the traditional phase-based MMSE reconstructor (see,
e.g., 3, 4), there are several key differences which make L&A interesting in its own right. From an optimi-
sation perspective, the L&A method is equivalent to regulating the residual slopes from the synthetic WFSs,
rather than the residual wave-front phase. This difference appears to have practical advantages, such as the
inclusion of non-common-path aberrations directly in the measurement space, and the opportunity to build a
more data-driven turbulence model (though we do not investigate those here).

Another notable difference between L&A and traditional MMSE is the dependency of a meta-pupil support.
L&A circumvents the need for defining an intermediate meta-pupil support (as can be seen in the upcoming
equations). A more general reconstruction technique was proposed by Correia et al.7 – the so-called spatio-
angular (SA) reconstructor – which also avoids such a support. As noted in that article, L&A turns out to be a
special case of this SA reconstructor, and so the extension of L&A to a predictive reconstructor (we refer to as
pL&A) is implied by Correia et al., albeit in phase-space and for an MOAO system. The purpose of this paper,
as stated, is to demonstrate pL&A in an MCAO system (nominally MAVIS12), but this could also be seen as
a demonstration of a slope-based SA reconstructor for MCAO. A performance analysis of traditional MMSE in
the context of MAVIS has been performed by Agapito et al.13

1.2 L&A Reconstructor

The L&A scheme is well suited for implementation in open-loop, and hence also POLC, whereby the linearity of
the DMs and WFSs are exploited to reconstruct the effective open-loop measurements from each WFS. As such,
it is appropriate to discuss the L&A scheme as per its implementation in an open-loop controller, and then to
use the POLC method to embed this estimator in a closed-loop system.

The main goal of L&A, as stated above, is to estimate WFS measurements in the directions of targets obtained
at time k (which we denote zk, and their estimate ẑk) from the actual measurements obtained at time k (which
we will denote sk). All of these measurements are assumed to be open-loop (i.e., the DM does not affect the
measurements). In classical L&A, these are typically obtained using the linear least mean square error (LLMSE)
estimate (see, e.g., 14) of zk given sk:

ẑk =
〈
zks

T
k

〉 〈
sks

T
k

〉 −1sk, (1)

where 〈·〉 denotes the expectation operator, and sTk denotes the transpose of sk.

Once the estimate of zk is determined, the computation of the DM command is simply the solution to the
regularised least-squares problem:

uk = arg min
u

‖Dzu− ẑk‖2 + α ‖u‖2

= (DT
zDz + αI)DT

z︸ ︷︷ ︸
Cz

ẑk, (2)

where Dz and Cz are the interaction and control matrices (respectively) with respect to the synthetic WFSs.
Combining Eqns. (1) & (2) gives an expression for the L&A reconstructor:

uk = Cz

〈
zks

T
k

〉 〈
sks

T
k

〉 −1︸ ︷︷ ︸
R

sk. (3)



The two covariance matrices (
〈
zks

T
k

〉
and

〈
sks

T
k

〉
) in the L&A scheme are updated regularly to account for

variations in system parameters (denoted collectively by ρ), namely the atmospheric turbulence profile. The
process of computing these matrices depends on identifying the unknown system parameters in the so-called
learn-step, by performing a nonlinear regression on the recent telemetry. This optimisation task is classically
performed using the Levenberg-Marquardt (LM) method (see, e.g., Vidal et al.1)- a second order nonlinear
least-squares optimiser. A recently published stochastic modification of LM, the so-called Stochastic Levenberg-
Marquardt (SLM) method by Hong et al.15 provides a GPU optimised implementation, showing a significant
speedup in time-to-solution for VLT scale MCAO systems (e.g., MAVIS12) and beyond. Our companion paper
by Zhang et al.9 discusses the performance (both numerical and time-to-solution) of the SLM method in a
MAVIS-like system.

The output of the learn-step is the set of system parameters ρ based on the most recent telemetry. These
parameters are the input to the so-called apply-step, where the required covariance matrices (

〈
zks

T
k

〉
and

〈
sks

T
k

〉
)

are populated, and the overall tomographic reconstructor is determined. The population of those matrices in
the classical L&A scheme is given in the following section, and the corresponding pL&A matrices are given in
Section 2.

1.3 Populating the Covariance Matrices

To populate the covariance matrices analytically, a model of the WFS geometry and turbulence structure function
(e.g., von Kármán16) is required. In the measurement space, these models can be found in Gendron et al.,17 and
provide expressions for populating a general measurement-based covariance matrix

〈
zks

T
k

〉
in the form of:

〈
zks

T
k

〉
ij

=

L∑
`=1

C`(x
`
i , y

`
i , x

`
j , y

`
j , ρ), (4)

where
〈
zks

T
k

〉
ij

is the (i, j)th element of
〈
zks

T
k

〉
, L is the number of layers of atmosphere included in the model,

and C` is the covariance function of the `th layer which is a function of the (x, y) sub-aperture coordinates
projected to the `th layer of turbulence, corresponding to the ith measurement in zk, and the jth measurement
in sk. Here we do not discuss the specific functions C`, only the fact that they depend on the projected sub-
aperture coordinates and the system parameters ρ. These functions are well documented and an open-source
implementation of Eqn. (4) can be found in the AOtools Python package,18 along with many other useful AO
related functions.

2. PREDICTION IN L&A

In order to improve the performance of the L&A scheme, particularly with regard to frozen-flow19 turbulence,
we provide a predictive step in the turbulence reconstruction. Specifically, to compensate for a pure-delay in the
control loop of d sampling periods, we propose estimating zk+d rather than zk. This is achieved in the same way
as in Eqn. (1), except with a modification of the time indices:

ẑk = 〈zk+d|sk〉
=
〈
zk+ds

T
k

〉 〈
sks

T
k

〉 −1sk. (5)

Notice that the matrices in Eqn. (5) have the same dimensions as those in Eqn. (1), showing that the extension
from the non-predictive L&A scheme to the predictive one comes at no increase in online computational burden.

To populate the time-shifted covariance matrix
〈
zk+ds

T
k

〉
, we use Eqn. (4), except that we shift the coordinates

by an amount equal to the distance they will be displaced due to frozen-flow evolution during a delay of d ∈ R
sampling periods: 〈

zk+ds
T
k

〉
ij

=
L∑

`=1

C`(x
`
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`
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`
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j , ρ), (6)

where T is the sampling period and (ν`x, ν
`
y) are the (x, y) velocities of the `th layer of turbulence.
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Figure 1. Timing diagram of AO loop including integration time, read-out time, and RTC time.

2.1 Implementation in Closed-loop

A non-integer value of the time delay, d, is handled automatically in the open-loop case, but for closed-loop
systems special care is required to form the correct POLC scheme. This is demonstrated in the timing diagram
shown in Figure 1. The pure-delay component is a result of the read-out time and RTC related computa-
tions/latency. We define the measurement sk as the one which is based on the integration over the time interval
t ∈ [(k − 1)T, kT ). This measurement is available in the RTC after TRO seconds, and the command computed
in the RTC is applied to the DM after an additional TRTC seconds. We then assume that the DM shape is held
constant over t ∈ [(k + d − 1)T, (k + d)T ). We define uk as the command which is computed after receiving
the measurement sk (despite the command not appearing at the DM until t = (k + d − 1)T ). This results in a
closed-loop measurement in the general case given by:

sCL
k = sk −Ds

1

T

∫ (k−d+1)T

(k−d)T

u(t) dt

= sk −Ds

(
∆uk−d + (1−∆)uk−d+1

)
(7)

∴ sk = sCL
k +Ds

(
(1−∆)uk−d+1 + ∆uk−d

)
, (8)

where Ds is the measurement interaction matrix, u(t) is the instantaneous command signal (assuming negligible
DM dynamics), ∆ , (d mod 1), and d , ceil(d).

We present for convenience the common case of two-frame delay (d = 2):

sCL
k = sk −Dsuk−2

∴ sk = Dsuk−2 + sCL
k . (9)

To be convinced of this identity and to overcome the ambiguity of the modulo and rounding functions at integer
values, note that the limit of Eqn. (8) as d approaches 2 from d < 2 is equal to the limit as d approaches 2 from
d > 2.

The pure open-loop control law with no temporal filtering would be:

uk = Rsk. (10)

Embedding this into a first order unity-gain low-pass IIR filter gives:

uk = (1− g)uk−1 + gRsk (11)

where the scalar g ∈ (0, 1) determines the cut-off frequency fc of the filter. This value can be tuned for a given
system, or determined analytically from a desired value of fc:

g = 2− cos (4πfc/fs)−
√

(2− cos (4πfc/fs))2 − 1,



where fc and the control sampling frequency fs are both in the same units (e.g., Hertz).

Finally, we combine this first order open-loop IIR filter with Eqn. (9) to obtain the closed-loop control law:

uk = (1− g)uk−1 + gR(Dsuk−2 + sCL
k )

= (1− g)uk−1 + gRDsuk−2 + gRsCL
k , (12)

or in the arbitrary delay case:

uk = (1− g)uk−1 + gR(sk +Ds

(
∆uk−d + (1−∆)uk−d+1

)
)

= (1− g)uk−1 + g(1−∆)RDsuk−d+1 + g∆RDsuk−d + gRsk. (13)

The first of these expressions is perhaps more appealing in the matrix notation. Eqn. (12) becomes:[
uk
uk−1

]
=

[
(1− g) gRDs

I 0

] [
uk−1

uk−2

]
+

[
gR
0

]
sCL
k . (14)

Clearly an implementation in the matrix form without optimisation would be unnecessarily inefficient, but
with some straightforward algorithmic modifications, the above (and also the general case of Eqn. (13)) can be
performed with only 2 matrix-vector multiplications; one of dimensions nact × nact and the other nact × nmeas

(where nact is the number of actuators and nmeas is the number of measurements).

3. SIMULATIONS

To evaluate the performance of the pL&A reconstructor, we compare it with the classical L&A implementation
in the end-to-end numerical simulator, COMPASS.20,21 Both reconstructors are embedded in POLC with fixed
g = 0.3. The system parameters are chosen to be match where possible the expected MAVIS configuration for
UT4 on the VLT.12 The simulation parameters are as follows:

• 8 LGS SH-WFS @ 17.5” radius (40× 40 subapertures each),

• LGS: 6× 6 pix, 5.39” FoV, 0.2e− RON, 75 photon/sub-ap/ms flux @ 589nm,

• 3 NGS TT-WFS @ 20” radius (1× 1 subaperture each),

• NGS: 50× 50 pix, 1.31” FoV, 0.5e− RON, 6000 photon/sub-ap/ms flux @ 1.65µm,

• 3 PZT DMs:

– 41× 41 actuators, 0.2m pitch @ 0km,

– 38× 38 actuators, 0.25m pitch @ 6km,

– 35× 35 actuators, 0.32m pitch @ 13.5km.

• 1ms WFS exposure time/control period,

• 2 frame delay (i.e., 1 frame pure-delay),

• 0.8” seeing @ zenith; C2
n profile in Table 1,

• 16% central obscuration,

• 8m telescope diameter,

• 0.3 inter-actuator coupling factor,

• 30◦ zenith angle,

• 30” diameter science FoV.



Table 1. Cn2 Profile and Layer Velocities. Weights taken

Altitude [m] Weight Effective r0 Velocity [m/s]
30 0.59 0.1623 6.6∠0◦

140 0.02 1.2364 5.9∠10◦

281 0.04 0.8157 5.1∠20◦

562 0.06 0.6396 4.5∠25◦

1125 0.01 1.8740 5.1∠0◦

2250 0.05 0.7135 8.3∠10◦

4500 0.09 0.5014 16.3∠20◦

7750 0.04 0.8157 30.2∠25◦

11000 0.05 0.7135 34.3∠0◦

14000 0.05 0.7135 17.5∠10◦
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Figure 2. Predictive (blue) vs Non-Predictive (orange) Learn and Apply for 1ms exposure time as a function of distance
from the centre. Solid line is the mean, dotted lines are minimum and maximum.

Using these simulation parameters, the difference in performance of L&A with and without prediction can
be seen in Figure 2 . The average long-exposure Strehl ratio (SR) over the science FoV is 33.04% and 27.55% for
predictive and non-predictive L&A respectively, corresponding to a improvement of 37.0nm RMS in the MAVIS
case under the conditions described above. Due to the tight error budget of MAVIS,12 this level of improvement
is expected to have a considerable effect on the sky-coverage capabilities of the instrument.

Also of interest is the relative gain achieved by the predictive approach as the exposure time changes. Figure 3
demonstrates this as the exposure time changes from 0.5ms to 2.5ms. It is clear that at very short exposure
times, the gain is relatively small (approximately 20nm RMS at 0.5ms exposure time). This is expected, due
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Figure 3. Predictive (green) vs Non-Predictive (blue) Learn and Apply for varying exposure time. Long Exposure SR
averaged over the 30” diameter Science FoV.

to the temporal evolution of the turbulence at this time-scale being mostly negligible. As the exposure time
increases, the performance of the non-predictive approach decays more rapidly than the predictive. The peak
performance of the pL&A based control scheme in this configuration occurs at 1.25ms exposure time, where the
improvement is 46nm RMS across the FoV. The improvement becomes more significant at longer exposure times,
as expected, with a difference of 88nm RMS at 2.5ms.

Testing in existing simulation tools beyond this time-scale is not shown here, due to the decreasing validity
of the frozen-flow assumption for longer time-scales.

4. CONCLUSION

Learn and Apply is a promising method for building MCAO tomographic reconstructors in systems such as
MAVIS. The addition of a predictive step in the L&A reconstructor provides an additional gain at no increase
in online computational load. For the MAVIS case, end-to-end numerical simulations suggest an improvement
of approximately 37nm RMS wave-front error averaged over the science FoV at 1ms exposure using pL&A when
compared to the non-predictive L&A algorithm.
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[8] C. M. Correia, K. Jackson, J.-P. Véran, et al., “Spatio-Angular Minimum-Variance Tomographic Controller
for Multi-Object Adaptive-Optics Systems,” Appl. Opt. 54, 5281–5290 (2015).

[9] H. Zhang, J. Cranney, N. Doucet, et al., “Predictive Learn and Apply: MAVIS Application - Learn,” in
(submitted to) Adaptive Optics Systems VII, International Society for Optics and Photonics, SPIE (2020).

[10] B. L. Ellerbroek and C. R. Vogel, “Simulations of Closed-Loop Wavefront Reconstruction for Multiconjugate
Adaptive Optics on Giant Telescopes,” in Astronomical Adaptive Optics Systems and Applications, 5169,
206 – 217, International Society for Optics and Photonics, SPIE (2003).

[11] P. Piatrou and L. Gilles, “Robustness Study of the Pseudo Open-Loop Controller for Multiconjugate Adap-
tive Optics,” Appl. Opt. 44, 1003–1010 (2005).

[12] F. Rigaut, R. McDermid, G. Cresci, et al., “MAVIS Conceptual Design,” in (submitted to) Ground-based
and Airborne Instrumentation for Astronomy VIII, International Society for Optics and Photonics, SPIE
(2020).

[13] G. Agapito, D. Vassallo, C. Plantet, et al., “MAVIS: System Modelling and Performance Prediction,” in
Adaptive Optics Systems VII, International Society for Optics and Photonics, SPIE (2020).

[14] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation, Prentice Hall (2000).

[15] Y. Hong, E. Bergou, H. Zhang, et al., “Stochastic Levenberg-Marquardt for Solving Optimization Problems
on Hardware Accelerators,” in (submitted to) 35th IEEE International Parallel & Distributed Processing
Symposium, IEEE (2021).

[16] M. Roggemann and B. Welsh, Imaging Through Turbulence, CRC Press (1996).

[17] E. Gendron, A. Charara, A. Abdelfattah, et al., “A Novel Fast and Accurate Pseudo-Analytical Simulation
Approach for MOAO,” Proc. SPIE 9148, 91486L–91486L–13 (2014).

[18] M. J. Townson, O. J. D. Farley, G. O. de Xivry, et al., “AOtools: a Python Package for Adaptive Optics
Modelling and Analysis,” Opt. Express 27, 31316–31329 (2019).
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