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ABSTRACT

The Learn and Apply reconstruction scheme uses the knowledge of atmospheric turbulence to generate a tomo-
graphic reconstructor, and its performance is enhanced by the real-time identification of the atmosphere and the
wind profile. In this paper we propose a turbulence profiling method that is driven by the atmospheric model.
The vertical intensity distribution of turbulence, wind speed and wind direction can be simultaneously estimated
from the Laser Guide Star measurements. We introduce the implementation of such a method on a GPU ac-
celerated non-linear least-squares solver, which significantly increases the computation efficiency. Finally, we
demonstrate the convergence quality from numerically generated telemetry, we provide the end-to-end Adaptive
Optics simulation results, and we highlight a time-to-solution analysis, all based on the MAVIS system design.

Keywords: adaptive optics, turbulence profiling, real-time processing, MAVIS, Learn and Apply, Stochastic
Levenberg-Marquardt

1. INTRODUCTION

The MCAO Assisted Visible Imager and Spectrograph (MAVIS) is a proposed instrument for the European
Southern Observatory’s (ESO) Very Large Telescope (VLT) Adaptive Optics Facility (AOF).1,2 It aims at
delivering near-diffraction limited images in the visible band utilising eight Laser Guide Stars (LGS) and three
Deformable Mirrors (DM). The high performance requirements lead to a tight error budget, and an optimised
control scheme is one of the most critical requirements.

Since 2019, the minimum mean-square error (MMSE) method has been applied to test and predict the
performance of the MAVIS system (see Agapito et al.3). Beyond that, the two-step Learn and Apply (L&A)
reconstruction scheme has also been explored as one of the candidates for the MAVIS project.4 Its first step
records a set of wavefront measurements to identify the atmospheric and instrumental parameters (so-called
Learn) and the second step computes the tomographic reconstructor (so-called Apply) using a minimum-phase-
variance approach. Recently, it has been extended to include a predictive estimation to further optimize for the
residual wavefront error caused by the servo-lag, which is also known as the predictive L&A (pL&A) method.
The readers may refer to the companion paper5 for more detailed discussion regarding to the implementation
of predictive control, which is also called predictive Apply in the pL&A scheme. In this paper we focus on the
identification of relevant atmospheric turbulence and wind profile, i.e. predictive Learn.

The calculation of a predictive L&A reconstructor is based on the frozen flow assumption,6 and requires the
knowledge of turbulence strength (C2

n distribution), wind speed and wind direction. Due to the rapidly evolving
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nature of the atmospheric turbulence, it is highly desirable that such information is updated in real-time. During
the past few decades, a variety of methods have been proposed to handle this task. Classical SLOpe Detection
And Ranging (SLODAR)7,8 uses a peak detection algorithm to identify the layer altitude and relative strengths
of atmospheric turbulence directly from Shack-Hartmann WaveFront Sensor (SHWFS) measurements, and is
extended to Laser Guide Star (LGS) cases by Gilles & Ellerbroek in 2010.9 The core idea of SLODAR is to
use the cross-correlation of the measurements from different LGSs to identify the contribution of turbulence as
a function of altitude. Wind profiling has been explored by Wang et al. in 2008,10 Sivo et al. in 2018,11 and
Laidlaw et al. in 2020,12 respectively. Their methods are inspired by the classical SLODAR, with one or more
additional steps involved to identify the wind profile using iterative fitting techniques. The computational load
of these methods can be extremely heavy when the AO system becomes more complicated, so they are usually
performed off-line, which does not fit the goal of predictive control. Other SLODAR or SLODAR-based methods
focus on the wind-vector norm, which does not contain the wind direction information, so cannot be directly
used in the calculation of predictive reconstructors.13

In this paper, we propose a predictive Learn method that is capable of estimating all required atmospheric
turbulence parameters for predictive tomographic reconstruction simultaneously in one step. Based on the
von Kármán turbulence model14 and the frozen flow assumption, an analytical time-delayed measurement co-
variance matrix can be derived from the AO system geometry. On the other hand, such a covariance matrix
can be numerically calculated using the pseudo open-loop telemetry. This motivates a least squares optimisation
problem, as defined in Eq. (3). A non-linear solver is introduced to iteratively fit the analytical model to the nu-
merical covariance matrix. This process typically involves large matrix calculations that are highly parallelizable
on GPU, which significantly boosts the computational efficiency.

This paper is organized as follows. In Sec. 2.1, we derive the predictive Learn scheme used to identify the
atmospheric turbulence parameters from the von Kármán model. We also show that this scheme is capable of
being further extended to estimate other useful parameters in the AO system, including the WFS translational
misregistration. In Sec. 2.2, we demonstrate the implementation of the above mentioned GPU accelerated non-
linear least-squares solver. In Sec. 3, we present simulation results regarding to the convergence quality of
numerical data, as well as end-to-end AO simulations using the predictive learn results, and the time to solution
analysis in the context of MAVIS. Finally, we present our conclusions in Sec. 4.

2. PREDICTIVE LEARN SCHEME

The L&A method is inspired by the conventional phase-based MMSE algorithm which is detailed in Le Roux
et al.15 L&A optimizes the DM command for a series of target directions (which are also known as “Truth
Sensors”) by projecting the actual WFS measurements to those directions. The projection is based on the
von Kármán turbulence model and a covariance matrix is used to build the link between different directions
in the metapupil, as shown in Vidal et al.4 In this paper we assume that the atmosphere turbulence can be
modeled by a number of vertically discrete layers, and the relative intensity of each layer is given by the C2

n

fractions. In the L&A scheme, the covariance matrix is directly derived in the slope space and is usually block
structured due to the x− y arrangement slope measurements. Every element in the matrix represents a pair of
sub-apertures and its value is a function of their distance and the atmospheric profile. Our companion paper5

provides an informative discussion of the use of covariance matrices in the predictive Apply step, and a detailed
expression of the functions can be found in Gendron et al.16 For readability, we use a shorthand notation F{·}
for the analytical model. Denoting the distance between ith and jth sub-apertures as rij , the slope covariance
between these two sub-apertures is given by:

Cs(i, j) = F{rij , ρ}, (1)

where ρ is the concatenation of atmospheric turbulence parameters. Note that some of the atmospheric turbulence
related parameters (e.g. the Fried parameter, the outer scale and altitude for different layers) are not taken into
consideration in the predictive Learn proposed in this paper as they are either possible to be identified with
other methods or not required to be updated in real-time.
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On the other hand, the same matrix can be numerically estimated from the AO telemetry data by:

Ĉs =
1

N

N∑
k=1

sks
T
k , (2)

where ·̂ denotes estimation, and sk is the zero-mean slope vector acquired by concatenating all measurements
from WFSs at time k. By definition, the estimation in Eq. (2) approaches the true value as N → ∞, so Cs in
practice always suffers from convergence noise.

Now the atmospheric turbulence profiling takes the form of a least-squares optimization:

ρ̂ = arg min
ρ∈Rd

‖Ĉs − Cs(ρ)‖2, (3)

where the ‖ · ‖2 operator is the Frobenius norm. The numerical Ĉs is used as the input dataset and an optimizer
is applied to find the solution. In the restricted case where only the C2

n profile is to be identified, the system is
linear and therefore the solution can be found using a standard linear least-squares solver.

2.1 Prediction in Learn

In every frame of an AO loop, the WFS measurement and the subsequent corresponding DM command cannot
happen simultaneously. There is always a lag due to the time required for WFS readout, DM command calculation
and application. The evolution of atmospheric turbulence during this period results in a residual phase error,
which can be mitigated using a predictive control scheme. The frozen flow assumption proposes that the temporal
evolution of atmospheric turbulence can be regarded as a pure translational shifting, which allows us to generate
the time shifted covariance matrix by including a wind shift term in Eq. (1):

Cs(i, j, δt) = F{‖−→r ij +−→r w‖, ρ}, (4)

where ~rw has components (vxδt, vyδt).

The corresponding numerical covariance is then defined as:

Ĉs(δt) =
1

N

N∑
k=1

sks
T
k+δt. (5)

Now ρ becomes the concatenation of C2
n, vx, vy for each layer, the least-squares solver defined in Eq. (3) can

be applied so that all turbulence related parameters can be estimated simultaneously. Additionally, the model
described by Eq. (4) can be further extended to fit other parameters that are used in AO control. As an example,
the translational misregistration of WFSs, including displacement in (x, y) direction, and rotation against the
pupil center, appear as additional terms in the overall distance between sub-apertures.

The least squares fitting process used here can be time consuming. Though the total number of parameters
to be identified is relatively small, the input dataset is quite large. For the MAVIS system where 8 LGSs are used
with (40 × 40) sub-apertures per LGS, the size of the covariance matrix yields (20k × 20k) and every element
of the matrix is considered as one term of the cost function, Eq. (3). A variety of techniques can be applied to
speed up the process, and in Sec. 2.2 we focus on a recently proposed non-linear solver.

2.2 Stochastic Levenberg-Marquardt Algorithm in Learn

Previous works employed the conventional Levenberg-Marquardt (LM) algorithm4 to solve the system defined in
Eq. (3). This algorithm is a second-order optimizer that is widely used in the machine learning community for
solving non-linear systems. As a variant of the Gauss-Newton method, LM uses a regularization factor µ along
with the Hessian H of the parameters to find the minimizer. The typical update hlm of the parameters ρ in one
iteration is the solution of:

(JTk Jk + µI)hlm = −gk, (6)
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where Jk is the Jacobian matrix of Cs(ρ) at kth iteration, JTk Jk is the approximated H, I is the identity matrix,
and g is the gradient of F (ρ). More detailed discussion on the conventional LM algorithm can be found in
[17,18]. It is worth noting that this algorithm operates on the full dataset (i.e., the numerical covariance matrix
as defined in Eq. (5)), therefore the computational power required is quite large and usually takes up to hundreds
of seconds to find the solution for large scale problems such as the MAVIS MCAO system.

Stochastic first-order algorithms such as Stochastic Gradient Descent have been widely used in the last
decade since the rise of machine learning and deep learning. These algorithms use only a subset of the dataset
to approximate the gradient, thus accelerating the computation per iteration. This approach inspires the idea of
the Stochastic LM (SLM) method, which is further justified by the apparent redundancy within the covariance
matrices. Sub-aperture pairs that have the same (x, y) displacement in space have exactly the same expected
covariance value, which leads to a large number of duplicated elements in those matrices. Thus an approximated
gradient can be derived from a random subset of the dataset. Eq. (6) can also be used to describe the SLM
algorithm update except that g and J are calculated using a random subset of elements in the covariance matrix.

Recently, Hong et al.19 demonstrated the SLM method showing a 50-fold acceleration compared to the
conventional LM algorithm with noiseless analytical datasets.

3. SIMULATIONS

In this section, we present the predictive Learn performance using simulation results.

3.1 Implementation Details

Our simulation consists of three steps.

1. Firstly, a large set of WFS measured slopes (so-called slope buffer) are collected from the end-to-end
numerical AO simulator, COMPASS.20,21 The AO system configuration chosen is based on the designed
parameters for the MAVIS system, as detailed in Sec. 3.2. The total amount of slope buffer is equivalent
to 1,000 seconds of on-sky observation time. It is assumed that the atmospheric turbulence configuration
(i.e., C2

n distribution, wind speed, wind direction, etc.) remains the same during this period.

2. Subsets of the slope buffer are used to compute different numerical covariance matrices as input. The
proposed predictive Learn and the SLM algorithm are implemented in the Supervisor module with HIgh
Performance Software (SHIPS), which is a software platform for the soft real-time component of tomo-
graphic AO systems.

SLM algorithms are implemented by using CPU while the most time-consuming operations (calculating
F (ρ) and calculating Hessian and gradient) are offloaded to GPU accelerators. The CUDA programming
model is used to implement these kernels introduced in Sec. 2.2.

We apply predictive Learn on these numerical covariance matrices.

3. At last, the results from step 2 are used to generate predictive Apply reconstructors. We run the end-to-
end AO simulations again in COMPASS with these reconstructors as a demonstration of predictive Learn
performance.

3.2 AO System Configuration

The MCAO system configuration used in this paper follows the MAVIS system design.2 Here we list only the
key parameters that are directly related to the predictive Learn process.

The telescope diameter is 8 meter, the AO system operates at 1 kHz, and the overall seeing at 500 nm
is 0.8 arcsec (at zenith). 8 LGS SHWFS located at 17.5 arcsec radius are used, with 40 × 40 sub-apertures
for each SHWFS. The readout noise is set to 0.5 e−. Therefore the total number of slope measurements per
frame is 19,584. A single Gaussian sodium distribution is assumed with LGS altitude at 90 km and flux 88
photon/sub-aperture/ms. The atmospheric profile used in all simulations is listed in Table 1. The predictive
Apply reconstructor used in step 3 is optimised for 30 arcsec Science Field of View (FoV).
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Table 1. Cn2 Profile and wind velocities.

Altitude [m] Cn2 Fraction Wind Velocity [m/s] Outer scale [m]
30 0.59 6.6∠0◦ 25
140 0.02 5.9∠10◦ 25
281 0.04 5.1∠20◦ 25
562 0.06 4.5∠25◦ 25
1125 0.01 5.1∠0◦ 25
2250 0.05 8.3∠10◦ 25
4500 0.09 16.3∠20◦ 25
7750 0.04 30.2∠25◦ 25
11000 0.05 34.3∠0◦ 25
14000 0.05 17.5∠10◦ 25

3.3 Results

Given the AO system and atmosphere configuration mentioned above, the performance of predictive Learn is
explored with regard to a variety of parameter settings as illustrated in Table 2.

Usually the convergence quality of the numerical covariance matrix is directly related to T but also depends
on the turbulence condition during this period, which is marked by Ind in our simulation. For each T selection, 4
numerical covariance matrices with different Ind are generated while ensuring no overlapping in the slope buffer.
Due to the similarity of turbulence between adjacent samples in time (e.g., sk and sk+1), it is not necessary
to collect 100% of the measurements to generate the numerical covariance matrix (lowering the communication
overheads). This leads to the use of the decimation rate r (e.g. r = 10% means taking only 1 measurement
out of 10 continuously collected measurements). In the following simulations, we keep r = 10% as it reduces
the computational load while keeping good Signal-to-Noise ratio. dT is usually chosen based on the frame rate
of AO system and the prior experience of turbulence on site. In this paper we set dT = 0.02 s, dp = 1%, and
µ = 3× 10−5 in all simulations.

Table 2. Parameters explored in simulations.

Parameter List Notation/unit Definition

Buffer
Parameters

Integration Time T / s Length of numerical buffer in seconds

Decimation Rate r / %
Percentage of slope buffer to be used

in covariance matrix calculation

Buffer Index Ind / N/A
ID of numerical buffer marked by

starting indices in total buffer
Time Delay dT / s Time delay for the calculation of covariance matrices

SLM
Parameters

Iteration Time Tmax / s Max time allowed for SLM algorithm
Data Percentage dp / % Percentage of data used in each SLM iteration

Regularization Factor µ / N/A Fixed value used in Eq. 6

Figure 1 shows the long exposure Strehl Ratio averaged over Science FoV (F-LESR) in end-to-end simulations
with tomographic reconstructors computed from predictive Learn results. The LESR standard deviation from
various Ind is given by the error bar. For comparison, we simulated the same system using exact knowledge of
the atmospheric parameters with a reconstructor generated by both classical L&A, and pL&A. These achieved
25.7% and 32.4% F-LESR at 550 nm respectively.

It is shown that the predictive Learn results are expected to achieve 32.1% F-LESR when using at least
T = 100 s slope buffer and Tmax > 10 s∗, the standard deviation (STD) is 0.4% F-LESR, which suggests that
the predictive Learn is quite robust in this case. Compared to the reference pL&A F-LESR, the wavefront RMS
error introduced in the predictive Learn process is approximately 7.5 nm.

∗In this paper, the Tmax is based on the use of a single NVIDIA Quadro RTX 5000 GPU.
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Figure 1. F-LESR from End-to-end simulation using reconstructor calculated from predictive Learn results as a function of
Tmax. Black dashed lines are the reference F-LESR acquired with ideal predictive and non-predictive L&A reconstructors.

For shorter slope buffers, the resulting F-LESRs were 31.6 ± 0.9% (T = 50 s) and 30.7 ± 1.5% (T = 30 s),
which outperform the non-predictive L&A case by 39.8 nm and 37.0 nm RMS error respectively.

3.4 Discussion

Figure 1 implies that buffers with smaller T are expected to give lower F-LESR and higher STD, which suggests
that the predictive Learn performance relies heavily on the convergence quality of slope buffer.

One way to study the convergence quality of a given numerical buffer is using the diagonal entries of the
corresponding numerical covariance matrix. As introduced in Sec. 2, the covariance matrix is block-structured
and the values are determined by the WFS sub-aperture coordinates. Specifically, the diagonal entries are the
temporal auto-covariances of the measurements at each sub-aperture, and thus only depend on their axis of
measurement (relative to the wind-profile) and not on their spatial coordinates. To see this, note that Eq. (4)
does not depend on sub-aperture coordinates when i = j (a.k.a., the diagonal).

Due to the stochastic nature of the turbulence, the convergence noise level varies significantly from buffers
with different T , as well as buffers with the same T but collected at different times during a simulated observation.
As a result, the diagonal values of numerical covariance matrices tend to follow a Gaussian distribution, and the
STD of which can be used to describe the convergence quality of the slope buffer. Figure 2 is the histogram
of diagonal values of 2 different numerical covariance matrices, along with Gaussian fits. Their corresponding
F-LESR are 27.9% (blue histogram, labeled “bad”) and 32.6% (orange histogram, labeled “good”) respectively
when Tmax = 10 s. It is shown that their convergence quality in the y − y direction are similar, yet the
distributions in the x − x direction are notably different, with the “bad” case deviating from the Gaussian
distribution significantly.

All simulations presented in this paper are based on the use of a single NVIDIA Quadro RTX 5000 GPU.
It is reasonable to assume that the supervisor hardware for dedicated systems such as MAVIS would be more
powerful than this. The reference SLM paper19 gives an informative scalability analysis for SLM algorithm which
demonstrates a decent linear acceleration when the SLM process is parallelized on modern multiple NVIDIA
GPU-based platforms.
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Figure 2. Histogram of numerical covariance matrices diagonal values, along with Gaussian fit, T = 30s. (a) x− x slope
covariance; (b) y − y slope covariance

4. CONCLUSION

The pL&A reconstruction technique shows great potential in the scope of the MAVIS project. The real-time
identification of atmospheric turbulence parameters is required for the computation of the predictive Apply
reconstructor. Using the predictive Learn method, it is possible to acquire such information from a 100 s slope
buffer requiring only 10 s for the SLM algorithm to converge on a reliable set of system parameters based on
the MAVIS system configuration and modest GPU hardware. The expected long-exposure Strehl ratio over the
30 arcsec MAVIS science FoV is 32.1% at 550 nm using predictive Learn result obtained from a 100 s slope
buffer, which is only 0.2% lower than the ideal predictive case when the true atmospheric profile is known. When
the slope buffer is reduced to 30 s long, the performance drops only to 30.7%. These results indicate that the
predictive Learn step of pL&A is feasible and effective on a system such as MAVIS, and further studies will be
undertaken for a variety of different atmospheric profiles, as well as further convergence optimizations within the
SLM algorithm.

REFERENCES

[1] F. Rigaut, R. McDermid, G. Cresci, et al., “MAVIS Conceptual Design,” in (submitted to) Ground-based
and Airborne Instrumentation for Astronomy VIII, International Society for Optics and Photonics, SPIE
(2020).

[2] F. Rigaut, D. Brodrick, G. Agapito, et al., “Toward a Conceptual Design for MAVIS,” in 6th International
Conference on Adaptive Optics for Extremely Large Telescopes, AO4ELT 2019, (2019).

[3] G. Agapito, D. Vassallo, C. Plantet, et al., “MAVIS: System Modelling and Performance Prediction,” in
Adaptive Optics Systems VII, International Society for Optics and Photonics, SPIE (2020).

[4] F. Vidal, E. Gendron, and G. Rousset, “Tomography Approach for Multi-Object Adaptive Optics,” JOSA
A 27(11), A253–A264 (2010).

[5] J. Cranney, H. Zhang, N. Doucet, et al., “Predictive Learn and Apply: MAVIS application - Apply,” in
Adaptive Optics Systems VII, International Society for Optics and Photonics, SPIE (2020).
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