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ABSTRACT

To provide data sharper than JWST and deeper than HST, MAVIS (the MCAO Assisted Visible Imager and
Spectrograph) will be driven by a state-of-the-art real-time control (RTC) system leveraging cutting edge tech-
nologies both in terms of hardware and software. As an implementation of the COSMIC platform, the MAVIS
RTC will host a hard RTC module, fed in quasi real-time with optimized parameters from its companion soft
RTC. In order to meet the AO performance requirement in the visible, the overall real-time pipeline latency
should be in the range of few hundreds microseconds ; and, considering the several high order wavefront sensors
(WFS) of the current optical design, the specifications of the hard RTC module are very close to those contem-
plated for ELT first light SCAO systems, making it as an at scale pathfinder for these future facilities. In this
paper, we will review the hardware and software design and prototyping activities led during phase A of the
project.
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1. INTRODUCTION TO THE COSMIC PLATFORM

COSMIC is a platform for AO Real-Time Control (RT'C), comprising both a hardware architecture and a software
stack, fulfilling the needs of the many flavors of AO at various scales including ELT instruments. It includes the
so-called hard real-time controller (HRTC), the soft real-time cluster (SRTC), an optimized middleware solution
and a simulator (both hardware and software). COSMIC is designed to cover the requirements of the most
challenging AO instruments, while maximizing efficiency and minimizing cost and complexity.

The hardware design relies on the use of a dense clusters of GPUs and many-cores, integrating an optimised
hardware interface unit based on the FPGA technology. Analysing past and current technology trends together
with future trends in High Performance Computing (HPC), these hardware choices have been driven by:

e the end of Moore’s law on a pure hardware standpoint and the advent of highly parallel processing featuring
heterogeneous hardware accelerators devices;

e the so-called memory wall problem due to the difference on the operational frequencies of the CPU and
the main memory, (exacerbated on heterogeneous computing due to host-to-accelerator communications),
and how the emergence of High Bandwidth Memory (HBM) as a new industry standard is partly solving
it;

e the roofline model, used to evaluate performance achievable on a given processor from its specifications
and how a typical AO workload is mapped on this model, showing clear benefits of using HBM equipped
accelerators;

e the bottleneck for applications running on clusters of distributed processors due to network communication
latency;
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e the emergence of dense nodes concepts from all mainstream vendors, composed of clusters of GPUs tightly
coupled through “intra-connect” not only optimised for high bandwidth between the GPUs but also for
low latency, to bypass this bottleneck;

o the prevalence of GPU acceleration devices on the HPC market today, with a clear domination of Nvidia
GPUs (see Top500 list).

To ensure long term maintainability with a guarantee of performance, the software platform relies on off-
the-shelf libraries and a both optimised and modular approach to build a variety of pipelines able to cope with
various AO flavors, from single conjugate to multi-conjugate and multi-object AO. This comprehensive software
stack includes the hard real-time pipeline as well as a feature-rich supervisory software, including performance
monitoring and loop optimisation tools together with a sequencer, a user interface and mandatory services
(alarms, logs) currently under heavy development, with the right level of abstraction to ensure compatibility
with a variety of observatories frameworks.

As shown by benchmarking results provided in this paper, the hard real-time solution is already delivering
the required performance in terms of throughput and jitter on existing hardware. In addition, it can scale to the
whole suite of ELTs instruments. The most complex and compute intensive part of the supervisor bundle is, as
well, already meeting the specifications of the most challenging AO concepts for ELTs.

This software platform also includes a comprehensive numerical simulation package, COMPASS, fully inte-
grated with the RT'C framework to provide a tool for checking performance and stability of the RTC pipeline as
well as a validation tool for future integration of innovative control schemes.

In this paper, we will review the hardware design and software architecture and provide relevant benchmarks
at the output of phase A for MAVIS.

2. COSMIC DESIGN FOR MAVIS

The AO RTC for MAVIS is based on an implementation of the COSMIC platform matching the needs for
diffraction limited observations in the visible wavelengths on the VLT. The main features include:

e a HRTC hardware platform based on a single server hosting a high density GPU cluster;

e a low latency data acquisition solution based on the puXLink concept from Microgate, providing the flexi-
bility required to handle the multiple streams of data from the various WFS and to the DMs and possibly
other hardware.

e a hard RTC software stack based on a comprehensive software bundle (a.k.a. OCEAN?!), providing a set
of functions including, inter-process communication, business units management, a configuration daemon
and monitoring tools.

e a soft RTC software stack, including the SHIPS and TIDES bundles, comprising high performance and
portable software for the identification of turbulence parameters together with an optimized pipeline for
the computation of the tomographic reconstruction. Additional loop supervision and optimization tools
are also included together with data distribution services.

e tight coupling between these components and a realistic and fast end-to-end simulator based on the COM-
PASS platform.?

2.1 HRTC design

The current baseline dimensioning for MAVIS includes 8 Laser Guide Star (LGS) wavefront sensors (WFS) with
about 40x40 subapertures each, totaling about 20k slopes ; and 3 Deformable Mirrors (DM) including the VLT
Deformable Secondary Mirror (DSM) and 2 additional post-focal DMs, totaling about 5k actuators.®

Assuming a typical sampling time of 1ms (to keep a maximum up-time even during the low Sodium season)
and obtain an 0dB AO rejection bandwidth better than 60Hz, the overall delay should be of the order of 2 frames



or lower. Following the definition of the RTC latency in the timing diagram below, and assuming a readout time
of 500us for the WFS camera and an inevitable delay of 1 frame due to half of the sampling time and half of the
zero-order hold, leaves us with less than half a frame (500us) of RTC latency to remain below the 2 frames delay.
Taking into account the ability to pipeline data acquisition and centroiding, this RTC latency could represent
a fraction of the total computing time. Nevertheless, in order to remain on the safe side, our goal is to reach
less than 200us of RT'C latency, which should get us to somewhere between 65 and 80Hz of 0dB AO rejection
bandwidth, inline with our performance requirements.*
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Figure 1. Typical MAVIS RTC timing diagram

The baseline HRTC wavefront reconstruction approach for MAVIS is based on Matrix-Vector Multiply
(MVM),> which has a low floating point operations per byte ratio (FLOP/byte), and as such is limited by
the sustained memory bandwidth of the hardware. In the case of single precision floating point MVM, it can be
shown that the achievable peak performance for a single processor in FLOP /s is given by half of its sustained
memory bandwidth in bytes/s. Assuming a 20k x 5k control matrix, and 250us of RTC latency this leads to a
memory bandwidth requirement of about 1600 GB/s. This is several times larger than what is achievable on a
high-end dual-socket CPU server and even on a single high-end GPU (as of early 2020). On top of this, we want
to secure some margin on this number because the HRTC pipeline includes more compute kernels than a simple
MVM.

All mainstream vendors (Nvidia, Intel and AMD), have included either in their roadmap or in their current
line of products dense servers composed of clusters of GPUs tightly coupled through “intra-connect” not only
optimised for high bandwidth between the GPUs but also for low latency. Such solutions should provide the
required bandwidth and this MVM throughput on a single server.

The design of the HRTC module hardware for MAVIS is thus driven by the ability to leverage the performance
of such a tightly coupled cluster of GPUs in a real-time pipeline with streaming data from the sensors. To achieve
deterministic performance, routing efficiently these streaming data to the GPUs memory is critical. Experience
has shown that this can be done efficiently over the PCle interface with a FPGA.5

2.2 SRTC design

Concerning the AO loop sequencing and optimization, the most challenging part, in terms of computing through-
put, is the AO loop supervisor sub-module. Its role is to feed the hard real-time controller, at a regular rate,
with a tomographic reconstructor matrix, computed from a statistical analysis of the WFS measurements. This
process involves dense arithmetics on a covariance matrix generated from the WFS measurements. These matrix
arithmetics are composed of matrix factorizations and basic linear algebra operations. The overall process can
be represented as a parallel problem with a numerical complexity scaling with N3, from which an optimized



implementation should maximize the usage of computing cores rather than the memory bus. Optimizing the
compute performance means higher update rate of the reconstructor matrix hence better image quality at the
output of the telescope and incidentally better science return. This computational load is quite significant for
an AQO system at the scale of MAVIS for the VLT but can be handled efficiently using GPUs.

Over the past years, significant work have demonstrated the performance of an efficient implementation
of the control matrix computation for tomographic AO on multicore system with multiple GPUs using high-
performance numerical library for solving large dense linear algebra problems with hardware accelerators.” ®
Such high performance implementation relies on the use of a dynamic run time system to schedule computational
tasks simultaneously on various compute devices and a data flow programming model based on the use of direct
acyclic graphs for an efficient scheduling in which the tasks are executed out-of-order and scheduled according
to a critical path for the execution. These implementations outperform asymptotically previous state-of-the-art
and runs at an unprecedented scale. The figure below shows the consistent performance improvement obtained
with GPUs, as compared to CPUs based architecture, for the computation of the tomographic reconstructor,
since 2012.
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Figure 2. Time-to-solution for the computation of the tomographic reconstructor as a function of the measurements
covariance matrix size and hardware generations.

The design of the SRTC module hardware for MAVIS is thus driven by the use of clusters of GPUs as tightly
coupled as possible. While most of the benchmarking presented in this paper is based on the use of high-end
GPU clusters with a dedicated ”intra-connect”, the compliance with such a hardware platform with various
observatories standards is still a matter of debate.

3. HRTC SUB-SYSTEM
3.1 HRTC software architecture

In a previous analysis,'? we proposed to prototype a real-time pipeline, using the concept of persistent kernels
coupled to direct memory access on the GPU. However, a major drawback of the persistent kernel approach is
the need to develop custom kernels which severely impacts the complexity of code and the ability to maintain
it over the long term. We are now proposing a hybrid approach, with a smart active wait mechanism, similar to
what is used in the persistent kernel approach, coupled to a more standard programming model for the compute
kernels allowing more flexibility in terms of:

e using standard optimized libraries such as CUBLAS, as much as possible in the pipeline



implementing various BUs, for additional processing tasks that can be switched on and off

A detailed description of the HRTC software architecture is provided in.*

3.2 HRTC benchmarking

In order to get realistic latencies estimates, we have run a series of end-to-end tests including most of the HRTC
pipeline (wavefront processing, wavefront reconstruction) and performed profiling, first over a large number of
iterations, after several optimization rounds. For these tests we have used 4 GPUs of a DGX-1 platform from
Nvidia, equipped with Tesla V100 GPUs.!!

In terms of software, the final setup we used in the validation tests is a prototype of the final HRT'C software
solution discussed above, with most of the building blocks working together:

a basic high-level user interface is launching several Marlin Business Units (BUs) to cover the main pipeline
operations

each of these BUs is connected to both the main Redis database containing all the system parameters and
two shared memory interfaces: one for FPS (configuration parameters of the BUs) and one for real-time
data

the shared memory interfaces all rely on the Octopus abstraction layer to provide various kinds of shared
memory (CPU or GPU) seamlessly

another process is used as a fast simulator, receiving the DM commands sent at the end of the pipeline
and mimicking the production of a new WFS frame

once a new frame is available the HRTC kernels perform the computations, sequentially through several
Marlin BUs and produce a command vector, made available on shared memory to be consumed by the fake
simulator

an additional Marlin BU is used for precision timing. Several strategies have been tested and the most
accurate one relies on CUDA events

a Kraken monitoring process can be launched from the user interface to check status and activity in the
threads

Several optimization strategies have been studied to obtain the results outlined below:

each process involved in the real-time pipeline is shielded and given RT priorities at the OS level

CUDA MPS is used to manage the multiple processes launching kernels on the same GPU and appropriate
GPU flags are set

resources allocation on the GPU is adapted for each BU, taking into account the difference in terms of
workload, relying on CUDA MPS to allocate these resources properly at runtime

BUs with limited workload such as centroiding on each WFS are regrouped into a container so that only
one process is consumed

this enables the use of CUDA streams and the kernels in a container can be pipelined

synchronization between processes is done through active wait based on smart memory polling rather than
a semaphore-based wait/notify mechanism

precision timing is done through CUDA events rather than a dedicated CPU process



Using multiple Marlin BUs provides full flexibility over the pipeline, with the ability to add or remove
processing tasks in the pipeline without a full reconfiguration. Using containers, we are able to reduce the
number of actual concurrent processes and leverage CUDA streams to pipeline efficiently both data transfer and
kernels execution. The resolution of the precision timer using CUDA events is of the order of 1us.

For benchmarking purposes, we have tested a simple pipeline realizing the critical / most compute intensive
tasks:

e the fast simulator is producing, at a regular rate (1kHz) a group of fake WFS frames, emulating the
acquisition of multiple WFS producing concurrently one frame each, and uploading this jumbo frame onto
the master GPU main memory, while notifying the timing BU to start measuring time

e several BU containerized into a single process perform centroiding on this group of WFS frames, fully
pipelined with the frame transfer, and leveraging concurrent execution using CUDA streams on the master
GPU a large MVM operation is launched on multiple GPUs

e results are gathered on the master GPU, the corresponding vectors are summed into one and the integrator

law is performed on the master GPU the fake simulator is notified that pipeline execution has finished,
together with the timing BU to stop timing

e at this point all the processes end up in active wait, until the fake simulator produces a new jumbo frame

We show below an execution profile obtained with the CUDA profiler. Note that, when the profiler is running,
precision timing is not possible, since the profiler probes may impact the execution. In the example below, we
have considered 6 LGS WFS (40x40) only and 3 NGS WFS (2x2 subaps).
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Figure 3. Execution profile zoomed over a pair of iterations. The incoming “jumbo” frame transfer is shown in orange and
the other colors represent compute or active wait kernels. The first group of lines is the total execution profile (including
all GPUs and all streams) and the lines below show the detailed execution profile per stream and per GPU.

This profile shows that most of the time between two incoming frames is spent “active waiting” which
provides enough margin to perform additional, non critical tasks. This can be leveraged to perform telemetry
tasks, without impacting performance. On top of this, there is even more margin on the slave GPUs, which
are only performing a fraction of the MVM. This could be leveraged in a more complex pipeline to perform
additional tasks such as Pseudo-Open Loop slopes reconstruction.



LT
s s Wl

Pipelined WFS frame
acquisition and processing MVM on

Concurrent kernels exec. DHIEIECEY

Figure 4. More details on the same execution profile, showing concurrent CUDA streams and memory transfer as well
as MVM on multiple GPU.

The scalability of this approach up to the current baseline dimensioning for MAVIS has been studied and
results are provided in the figure below. In this case, the system configuration included 8 LGS WF'S 40x40 (1200
valid sub-apertures per WFS) and 3 NGS WFS 2x2 (4 valid) and 5404 actuators distributed over 3 DMs. We
performed a long run of 1M iterations with a camera emulator providing WFS images at a 1kHz frame rate,
showing that no observed outlier during this period of time.
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Figure 5. Execution profile over a long run (20 minutes of operation) for a MAVIS baseline system dimensioning (8 LGS
WEFS + 3 NGS WFS and 5k actuators)
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Figure 6. Histogram of the execution time over a long run (20 minutes of operation) for a MAVIS baseline system
dimensioning (8 LGS WFS + 3 NGS WFS and 5k actuators).

From this results we obtain the following statistics on the execution profile:

e Mean time-to-solution (pure RTC latency) : ~262us
o P2V jitter: ~45us

o RMS jitter: ~6us

With this benchmarking, we have demonstrated our ability to perform the most demanding tasks of the
MAVIS pipeline, on multiple GPUs, within the target envelope of 250us (assumed target to be confirmed follow-
ing further simulation/analysis and flow down from the TLR to the RTC subsystem specifications), including
telemetry offload and regular command matrix updates. It has to be noted that significant margin exists, in
particular on the slaved GPUs, and will be leveraged in the future phases of the project to implement a more
complex pipeline.

With these benchmarks, we have shown that a very low latency (of the order of 250us) can be reached
with simple optimization recipes while keeping a high level of modularity in the pipeline and very low jitter
(of the order of few us RMS) and enough margin is now available to run the additional tasks of the MAVIS
pipeline. This demonstration of an implementation of active wait using memory polling opens as well the way
to a better pipelining of the computation steps with the data transfer to reduce the overall RT'C latency to the
150us level. This feature, fully integrated in the Marlin BU, can be coupled to efficient data acquisition through
the GPUdirect mechanism.

We have thus also demonstrated the feasibility of GPUdirect using standard development tools available on
the uXComp board from Microgate, which is already available and similar, in terms of FPGA device and driver,
to the pXlink board we plan to use. To do so, we have developed a small prototype based on the reference design
available with the Arria 10 FPGA and the associated driver, to be implemented on the pXcomp board. In this
test, a simple DMA operation is performed between the pXcomp board and a GV100 GPU on a motherboard
with a single X86 socket. The server runs CentOS and standard development tools have been installed. We have
compared the bandwidth and latency achieved with the DMA engine included with the FPGA hard IP both to



CPU memory and GPU memory, with respect to buffer size. The results are shown in figure 2. The obtained
results show that data transfer directly from the Microgate board to the GPU memory is at worst as efficient
as transfer to CPU memory. For this test, we have implemented scatter/gather DMA with 128 descriptors. To
increase the buffer size, we have modified the number of words per descriptor. The results show that similar to
better bandwidth can be obtained from the yXComp board to the GPU as compared to the case with CPU.
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Figure 7. bandwidth (left) and latency benchmarking for direct memory access from a FPGA interface to CPU memory
(blue) and GPU memory (red) for various packet sizes.

For small buffer sizes, the workload is not able to saturate the bus and a floor latency of about 10us is
observed. Reading eight ALICE cameras will require an overall buffer size of about 400kBytes. From the results
below, this leads to a theoretical latency of about 60us. We note here that this is almost 10 times smaller than
the camera readout time of 500us and we thus do not expect to introduce any additional latency with data
acquisition directly on the GPU.

4. SRTC SUB-SYSTEM

The SRTC software is composed of two main components:

e SHIPS: is a software stack gathering the sequencer, the user interface, services such as alarms and logs
handling as well as compute intensive modules for supervising and optimizing the AO loop

o TIDES: is a software bundle covering the middleware domains for sending commands to the RTC and
publishing / receiving telemetry data

4.1 Command interface and data distribution

Concerning TIDES, the Telemetry Interface and Data Exchange Software, we have followed a similar approach
as adopted for Octopus, by developing abstraction layers for the main functions in order to make the code base
agnostic to any particular software standards. The UML diagram below depicts the two abstraction layers devel-
oped for both the command and the telemetry interfaces, together with examples of possible implementations,
including:

e DDS, raw UDP and MUDPI for the telemetry interface

o ZeroMQ for the command interface

More implementations could be added in the future, depending on the evolution of standards and instruments
specifications.

A critical benefit from using these abstraction layers is our ability to adapt to different standards, without
affecting the code base. This is particularly relevant to cope with both the VLT and ELT frameworks and provide
a unified solution.

Figure 8 depicts the two main TIDES software components. The stack is composed of three main softwares:
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Figure 8. TIDES concept for streamers and commands

4.2 Overall supervisory software

SHIPS, the Smart and High Performance Supervisory software is still under heavy development and we plan to
leverage the extended experience of the COSMIC partners in designing, implementing and operating AO systems
to provide a feature-rich software stack covering the needs of most AO concepts.

The main features will include:

e Performance Monitor module: a number of routines to monitor the behavior of the AO system and its envi-
ronment including seeing, Strehl ratio, PSF reconstruction and all associated calibrated data (background,
flat field, reference slopes and NCPA)

e Optimizer module: a wide range of functionalities will be provided to the user, including optimized modal
basis computations, modal gains optimizations, centroid gains identification and optimization. Most of
the core routines are already available from the COMPASS simulator and will be better integrated in
the SRTC software. On top of this, we are developing a tomographic AO supervisor (described below),
together with predictive control and vibration mitigation. Here, close collaborations with instruments
consortia are contemplated to fit the needs of each instrument, while the COSMIC platform provides the
tools for optimized implementations

e Sequencer and Ul: we have plans for a Python-based sequencer, fully interfaced with TIDES and both
a command line and a graphical UI (based on Qt). A prototype is already in place as a command line
interface. The engineering GUI is inherited from COMPASS.

e Services module: this will be based on abstraction layers as well, to cope with various possible standards
for logging and alarms. The online database will be consistent with the approach followed in OCEAN and
will be based on the Redis database.



These components are fairly well aligned with current development at ESO codenamed RTC Toolkit and the
COSMIC solution is designed to integrate the corresponding modules as they are made available. Our goal is
not to provide an alternative solution to the RTC toolkit but rather be able to integrate its components. We
have superimposed the components of our software stack on the RTC Toolkit components, in the block diagram
below, taken from the Toolkit specifications document.

4.3 Tomographic supervisor solution

The most challenging component of the SRTC software in terms of workload is the optimizer module and in
particular for tomography. We take here the example of the Learn and Apply scheme (see Vidal et al. 2012) in
which computing a relevant tomographic reconstructor can be decomposed into five tasks:

e The first one, consists of computing an empirical covariance matrix of the measurements from the actual
WF'S

e The next step, so-called Learn, takes as input the empirical covariance matrix newly computed. Its objective
is to retrieve (Learn) the atmospheric profile composed of three parameters per layer: the altitude, strength
and outer scale, as well as some particular system parameters (depending on how well the actual system
has been calibrated). In order to do so, we rely on a model function, returning a covariance matrix of
measurements given parameters of the optical system which will be considered as invariant in the following
and the atmospheric parameters of interest.

e Once the atmospheric profile has been estimated, it can be used to generate, with the help of the same
model function, the theoretical covariance matrix of the actual measurements, and the theoretical covariance
matrices of virtual truth sensors measurements with the theoretical measurements of the actual WFS.

e The next step is the core of the supervisor and is so-called Apply. The objective of this step is to find the
tomographic reconstructor derived from the matrices computed at the previous step, by solving a system
of linear equations through Cholesky factorization

e Finally, the tomographic reconstructor is multiplied by a control matrix. The result of this step is a change
of basis matrix, from the actual measurements to the DM’s commands, providing a way to control the
DMs.

4.4 SRTC benchmarks

We have performed some benchmarking of both the Learn and Apply steps of the supervisor pipeline. While
this approach is not the current baseline for the loop supervision pipeline, it provides a good estimate in terms of
compute load and achievable performance. These benchmarks were obtained on a DGX-1 server from NVIDIA,
with the 2018 configuration, based on V100 GPUs hosting 16GB of glocal memory per GPU. Newest DGX-1
configurations involve the same V100 GPUs with similar HBM2 memory but with increased capacity (up to 32
GB of global memory per GPU) and we do not expect a significant speedup with this generation.

Concerning the Learn step, since this part of the pipeline consists mostly in the optimization of a score function
based on the measurements covariance matrix obtained from the actual WFS data and a model function, our
implementation is based on an optimized multi-GPU implementation of the Levenberg-Marquardt algorithm
(in-house development).

The results are shown below, using 4 of the 8 GPUs onboard the DGX-1 server and for varying numbers of
turbulence parameters (respectively 10 and 40 layers) and varying matrix sizes (the MAVIS case is around the
middle of the X-axis: 20k).

These results show that a 40 layers turbulence profile can be obtained in about 80 sec for a 22k x 22k
covariance matrix on a DGX-1 server equipped with 8 V100 GPUs but using only half of it, which complies with
the requirement of a few minutes to update the tomographic reconstructor. This implementation relies mostly
on GPU resources and using limited CPU resources (a single process on a single core).
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Figure 9. Performance in terms of time-to-solution for the parameter identification pipeline (a.k.a. Learn) in a 2-pass
process: first rough estimate on 10 parameters only and then full estimate on 43 parameters, using previous results as the
starting point. The 43 parameters include 40 turbulent layer strengths and 3 geometrical parameters (misregistration).

In terms of robustness of the estimator, these benchmarks were performed targeting the ESO median profile
(VLT-SPE-ESO-11250-4110). The two graphs below demonstrate the accuracy of the reconstructed profile. A
slight overshoot can be noticed for the ground layer, but we believe it will have a rather limited impact on the
tomographic error. This will be investigated during phase B.
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Figure 10. Accuracy of the reconstructed profile. Left: targeted versus reconstructed profile on 40 layers, right: same
comparison but with cumulated profiles.

Concerning the Apply step, we have performed similar benchmarking on varying matrix sizes on the DGX-1
server equipped with V100 GPUs and using a single precision implementation.

In this case we considered the MCAO case for the Apply pipeline as described in'? with up to 25 truths
sensors (T'S). In this approach, the covariance matrices between the truth sensors measurements and the actual
WFS are concatenated in a single meta-matrix (meta-Ctm) and the obtained reconstructor (the product of this
meta-Ctm with the invert of the covariance matrices of the actual WFS measurements) is then multiplied by a



meta least-square control matrix, between the T'S and the system DMs (see equation 7, 8 and 9 of Doucet et al).

This is somehow a worst case scenario for the Apply step, where the size of the matrices are very large as
compared to a typical MMSE approach based on modes rather than TS slopes. For these benchmarks, the TS
have each around 2.5k measurements and the system hosts about 5k actuators in total. The results are reported
in the Figure below and show that the tomographic reconstructor can be obtained in less than 5sec for the
MAVIS case (20k x 5k). Again, this pipeline relies mostly on GPU resources and is using a very limited amount
of CPU resources (single process on a single core).
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Figure 11. Performance in terms of time-to-solution for the computation of the tomographic reconstructor (a.k.a “Apply
step”) on a NVIDIA DGX-1 equiped with V100 GPUs, using only 4 GPUs for varying matrix size. RHS means Right
Hand Side, it is the number of actuators in the system.

It can be noticed that performance for the smallest matrix size is worse than for larger matrices. It is due to
a combination of two factors:

e the workload is too small to maximize the resources occupancy on this multiple GPU setup

e we are relying on a dynamic scheduler (Chameleon) which automatically assigns blocks of computations to
given resources in the system. A custom approach, relying on static scheduling for this particular matrix
size, would help to improve performance, but we have chosen to avoid this path, to keep enough flexibility
for future developments

With these results, we show that the tomographic reconstructor for MAVIS could be updated every two
minutes or less, thanks to these optimized implementations (including both turbulence parameters identification
and tomographic reconstructor computation). Further optimization (hence lower execution time) is expected
when leveraging mixed precision at the different steps of the pipeline.

5. CONCLUSION

There is no dispute that the current baseline for MAVIS RTC, based on the COSMIC platform, will be able
to deliver the necessary performance (HRTC and SRTC). The vast majority of the codebase (90%) is based on
well accepted standards (C++, python) and is designed for extensibility to facilitate future upgrades (e.g. in
terms of adding new compute kernels in the pipeline). It is using standard mathematical libraries (e.g. BLAS,
LApack), at the exclusion of any specialised, unsupported packages, or low level tweaks tailored to specific
hardware platforms which are difficult to maintain.

The field of AO supervision, performance optimisation through e.g. predictive methods, turbulence identifi-
cation methods, is in full bloom right now. We already have such optimisation methods, and without a doubt



more will come in the next four to five years, prior to MAVIS AO RTC integration. An important point we
would like to raise is that the platform, having overhead performance space, will be able to handle these. The
platform, having overhead performance space, will be able to handle these.

[1]

[10]

[11]

[12]

REFERENCES

Ferreira, F. and et al, “Hard real-time core software of the AO RTC COSMIC platform: architecture and
performance,” in [This Conference], Proc. SPIE (2020).

Ferreira, F., Gratadour, D., Sevin, A., and Doucet, N., “Compass: An efficient gpu-based simulation software
for adaptive optics systems,” in [2018 International Conference on High Performance Computing Simulation
(HPCS)], 180-187 (2018).

Viotto, V. and et al, “MAVIS: the adaptive optics module feasibility study,” in [This Conference],
Proc. SPIE, 11448-9 (2020).

Rigaut, F. and et al, “MAVIS conceptual design,” in [This Conference], Proc. SPIE, 11447-332 (2020).
Agapito, G. and et al, “MAVIS System modelling and performance prediction,” in [This Conference],
Proc. SPIE, 11448-103 (2020).

Perret, D., Lainé, M., Bernard, J., Gratadour, D., and Sevin, A., “Bridging FPGA and GPU technologies
for AO real-time control,” in [Adaptive Optics Systems V|, Proc. SPIE 9909, 99094M (July 2016).
Charara, A., Ltaief, H., Gratadour, D., Keyes, D. E., Sevin, A., Abdelfattah, A., Gendron, E., Morel,
C., and Vidal, F., “Pipelining Computational Stages of the Tomographic Reconstructor for Multi-Object
Adaptive Optics on a Multi-GPU System,” in [SC’14], 262-273, IEEE (2014).

Ltaief, H., Gratadour, D., Charara, A., and Gendron, E., “Adaptive Optics Simulation for the World’s
Largest Telescope on Multicore Architectures with Multiple GPUs,” in [Proceedings of the Platform for
Advanced Scientific Computing Conference], PASC ’16, 9:1-9:12, ACM, New York, NY, USA (2016).
Ltaief, H., Charara, A., Gratadour, D., Doucet, N., Hadri, B., Gendron, E., Feki, S., and Keyes, D.,
“Real-time massively distributed multi-object adaptive optics simulations for the european extremely large
telescope,” in [2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS)], 75-84
(2018).

Bernard, J., Perret, D., Sevin, A., Laine, M., Buey, T., and Gratadour, D., “Design and performance of a
scalable GPU-based AO RTC prototype,” in [Adaptive Optics Systems VI|, Close, L. M., Schreiber, L., and
Schmidt, D., eds., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 10703,
107034B (July 2018).

https://images.nvidia.com/content /technologies/deep-learning/pdf/61681 DB2-Launch-Datasheet-Deep-
Learning-Letter-WEB.pdf, “Dgx-1 product brief,” tech. rep.

Doucet, N., Kriemann, R., Gendron, E., Gratadour, D., Ltaief, H., and Keyes, D., “Scalable soft real-time
supervisor for tomographic AO,” in [Adaptive Optics Systems VI|, Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series 10703, 107034L (Jul 2018).



	Introduction to the COSMIC platform
	COSMIC design for MAVIS
	HRTC design
	SRTC design

	HRTC sub-system
	HRTC software architecture
	HRTC benchmarking

	SRTC sub-system
	Command interface and data distribution
	Overall supervisory software
	Tomographic supervisor solution
	SRTC benchmarks

	Conclusion

